

Bachelor of Science (B.Sc.) Semester—III

Examination

302 : PHYSICS

(Physical Optics & Electromagnetic Waves)

Paper—II

Time—Three Hours]

[Maximum Marks—50

N.B. :— (1) All questions are compulsory.

(2) Draw neat diagram wherever necessary.

EITHER

1. (A) (i) With a neat diagram, describe the construction and working of Michelson's Interferometer.

(ii) In a Michelson's Interferometer, 300 fringes cross the field of view when the movable mirror is displaced through 0.0825 mm. Calculate the wavelength of monochromatic light used.

3+2

(B) Derive the conditions of interference for bright and dark fringes due to transmitted light from a thin film.

5

5. Attempt any **TEN** questions :

- (i) What do you mean by monochromatic light ?
- (ii) Give any two advantages of Fabry-Perot interferometer over Michelson's interferometer.
- (iii) If the top and bottom surface of the thin film are of glass plate having refractive index 1.52. calculate the reflectivity of the top surface.
- (iv) What is grating element ?
- (v) Draw the intensity distribution curve in Fresnel's diffraction at a straight edge.
- (vi) In a double slit Fraunhofer pattern find the missing orders of interference maxima, when $b = 2a$.
- (vii) State Malu's Law.
- (viii) What are negative and positive crystals ?
- (ix) If the angle between a polarizer and analyzer is 60° . What will be the intensity of transmitted light if I_o be the intensity of incident light.

OR

- (C) Explain the difference between Fresnel and Fraunhofer diffraction. 2½
- (D) Explain Rayleigh's criterion of resolution. 2½
- (E) What is plane diffraction grating ? Obtain an expression for resolving power of grating. 2½
- (F) Monochromatic light of wavelength 6560×10^{-8} cm falls normally on a grating 2 cm wide. The first order spectrum is produced at an angle of $18^\circ 14'$ from the normal. What is the total number of lines on the grating ? (Given : $\sin 18^\circ 14' = 0.3129$) 2½

EITHER

- 3. (A) Give construction and working of Nicol Prism. How it is used as a polarizer and analyser ? 5
- (B) (i) What is quarter wave plate ? How is it used to produce circularly polarised light ? 3
- (ii) Calculate the minimum thickness of a quarter wave plate of quartz for a light of wavelength 6000 Å, when refractive indices of o-rays and e-rays are 1.533 and 1.544 respectively. 2

OR

(C) State the basic postulates of Huygen's theory of double refraction in uniaxial crystal. 2½

(D) Explain the structure of Calcite crystal and define optic axis. 2½

(E) Explain the formation of ordinary and extra-ordinary rays in uniaxial crystal for oblique incidence, when optic axis is in the plane of incident and parallel to the crystal surface. 2½

(F) Calculate the polarizing angle at the surface of separation of water and glass for reflection in water. The refractive indices of water and glass are 4/3 and 3/2 respectively. 2½

EITHER

4. (A) State Maxwell's equations in electromagnetic wave theory. Show by mathematical treatment that electromagnetic waves are transverse in nature. 5

(B) (i) Derive an expression for the equation of continuity for time varying field. 3

(ii) Find the amplitude of the displacement current density inside a large oil filled power capacitor if $E = 80 \cos (6.277 \times 10^{-8}t - 2092 y) a_z$ V/m. (Given = $\epsilon_0 = 8.85 \times 10^{-12}$ SI unit). 2

OR

(C) Discuss the important contribution made by Maxwell in the form of modification of Ampere's circuital law and hence obtain Maxwell's first relation of electromagnetic field. 2½

(D) Show that electric and magnetic field vectors in an electromagnetic waves are perpendicular to each other and they are also perpendicular to the direction of propagation of waves. 2½

(E) Describe electromagnetic spectrum with a neat labelled diagram and state frequency/wavelength ranges of various types of waves. 2½

(F) Calculate the Poynting vector on the surface of the sun if power radiated by it is 3.8×10^{26} watt and if average distance between the sun and the earth is 1.5×10^{11} m. Hence, show that the value of solar constant is 1.34×10^3 watt/m². 2½

OR

(C) With the help of neat diagram, describe the construction and working of Fabry-Perot interferometer. 2½

(D) Show that in Newton's rings the diameter of bright ring is directly proportional to the square root of odd natural number. 2½

(E) How will you determine the refractive index of liquid using Newton's ring ? 2½

(F) A soap film of refractive index $4/3$ and thickness 1.5×10^{-4} cm is illuminated by white light incident at an angle of 45° . The light reflected by it gives dark band corresponding to wavelength 5×10^{-5} cm. Calculate the order of interference band. 2½

EITHER

2. (A) Give the theory of Fresnel's diffraction due to straight edge and explain the intensity distribution in the diffraction pattern. 5

(B) (i) Give construction and theory of zone plate. 3

(ii) If the diameter of a central zone is 2.5 mm and a point source of light of wavelength 7.5×10^{-5} cm is placed 5 m away from the zone plate. Find the position of primary and secondary image. 2

(x) What are current density and current displacement density ?

(xi) What is characteristic impedance ?

(xii) Draw a labelled diagram of travelling electromagnetic wave. 1 mark each